A new topology over the primary-like spectrum of a module
نویسندگان
چکیده
<p>Let R be a commutative ring with identity and M unitary R-module. The primary-like spectrum Spec<sub>L</sub>(M) is the collection of all submodules Q M, recent generalization primary ideals, such that M/Q primeful In this article, we topologies patch-like topology, show when, topology quasi-compact, Hausdorff, totally disconnected space.</p>
منابع مشابه
PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. We define the primary spectrum of $M$, denoted by $mathcal{PS}(M)$, to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$. In this paper, we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a sub...
متن کاملON THE MAXIMAL SPECTRUM OF A MODULE
Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied general topology
سال: 2021
ISSN: ['1576-9402', '1989-4147']
DOI: https://doi.org/10.4995/agt.2021.13225