A new topology over the primary-like spectrum of a module

نویسندگان

چکیده

<p>Let R be a commutative ring with identity and M unitary R-module. The primary-like spectrum Spec<sub>L</sub>(M) is the collection of all submodules Q M, recent generalization primary ideals, such that M/Q primeful In this article, we topologies patch-like topology, show when, topology quasi-compact, Hausdorff, totally disconnected space.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$‎. ‎In this paper‎, ‎we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a sub...

متن کامل

ON THE MAXIMAL SPECTRUM OF A MODULE

Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.

متن کامل

a structural survey of the polish posters

تصویرسازی قابلیتهای فراوانی را دارا است

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied general topology

سال: 2021

ISSN: ['1576-9402', '1989-4147']

DOI: https://doi.org/10.4995/agt.2021.13225